Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 939
Filtrar
1.
Brain Tumor Pathol ; 41(2): 43-49, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564040

RESUMO

Oligodendroglioma, IDH-mutant and 1p/19q-codeleted is known for their relative chemosensitivity and indolent clinical course among diffuse gliomas of adult type. Based on the data from phase 3 clinical trials, the standard of post-surgical care for those tumors is considered to be initial chemoradiotherapy regardless of histopathological grade, particularly with PCV. However, partly due to its renewed definition in late years, prognostic factors in patients with those tumors are not well established. Moreover, the survival rate declines over 15 years, with only a 37% OS rate at 20 years for grade 3 tumors, even with the current standard of care. Given that most of this disease occurs in young or middle-aged adults, further improvements in treatment and management are necessary. Here, we discuss prognostic factors, standard of care and chemotherapy, and future perspectives with neoadjuvant strategy in those tumors.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 1 , Isocitrato Desidrogenase , Mutação , Terapia Neoadjuvante , Oligodendroglioma , Padrão de Cuidado , Humanos , Oligodendroglioma/genética , Oligodendroglioma/terapia , Oligodendroglioma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Prognóstico , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética , Adulto , Deleção Cromossômica , Taxa de Sobrevida , Pessoa de Meia-Idade
2.
Brain Tumor Pathol ; 41(2): 80-84, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294664

RESUMO

Oligodendrogliomas characterized and defined by 1p/19q co-deletion are slowly growing tumors showing better prognosis than astrocytomas. TP53 mutation is rare in oligodendrogliomas while the vast majority of astrocytomas harbor the mutation, making TP53 mutation mutually exclusive with 1p/19q codeletion in lower grade gliomas virtually. We report a case of 51-year-old woman with a left fronto-temporal oligodendroglioma that contained a small portion with a TP53 mutation, R248Q, at the initial surgery. On a first, slow-growing recurrence 29 months after radiation and nitrosourea-based chemotherapy, the patient underwent TMZ chemotherapy. The recurrent tumor responded well to TMZ but developed a rapid progression after 6 cycles as a malignant hypermutator tumor with a MSH6 mutation. Most of the recurrent tumor lacked typical oligodendroglioma morphology that was observed in the primary tumor, while it retained the IDH1 mutation and 1p/19q co-deletion. The identical TP53 mutation observed in the small portion of the primary tumor was universal in the recurrence. This case embodied the theoretically understandable clonal expansion of the TP53 mutation with additional mismatch repair gene dysfunction leading to hypermutator phenotype. It thus indicated that TP53 mutation in oligodendroglioma, although not common, may play a critical role in the development of hypermutator after TMZ treatment.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Mutação , Recidiva Local de Neoplasia , Oligodendroglioma , Fenótipo , Temozolomida , Proteína Supressora de Tumor p53 , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Temozolomida/uso terapêutico , Recidiva Local de Neoplasia/genética , Antineoplásicos Alquilantes/uso terapêutico , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Isocitrato Desidrogenase/genética , Dacarbazina/uso terapêutico , Dacarbazina/análogos & derivados
3.
J Neurooncol ; 166(2): 273-282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227143

RESUMO

PURPOSE: Liquid biopsy of cyst fluid in brain tumors has not been extensively studied to date. The present study was performed to see whether diagnostic genetic alterations found in brain tumor tissue DNA could also be detected in cell-free DNA (cfDNA) of cyst fluid in cystic brain tumors. METHODS: Cyst fluid was obtained from 22 patients undergoing surgery for a cystic brain tumor with confirmed genetic alterations in tumor DNA. Pathological diagnoses based on WHO 2021 classification and diagnostic alterations in the tumor DNA, such as IDH1 R132H and TERT promoter mutation for oligodendrogliomas, were detected by Sanger sequencing. The same alterations were analyzed by both droplet digital PCR (ddPCR) and Sanger sequencing in cyst fluid cfDNA. Additionally, multiplex ligation-dependent probe amplification (MLPA) assays were performed to assess 1p/19q status, presence of CDKN2A loss, PTEN loss and EGFR amplification, to assess whether differentiating between astrocytomas and oligodendrogliomas and grading is possible from cyst fluid cfDNA. RESULTS: Twenty-five genetic alterations were found in 22 tumor samples. All (100%) alterations were detected in cyst fluid cfDNA by ddPCR. Twenty of the 25 (80%) alterations were also detected by Sanger sequencing of cyst fluid cfDNA. Variant allele frequency (VAF) in cyst fluid cfDNA was comparable to that of tumor DNA (R = 0.62, Pearson's correlation). MLPA was feasible in 11 out of 17 (65%) diffuse gliomas, with close correlation of results between tumor DNA and cyst fluid cfDNA. CONCLUSION: Cell-free DNA obtained from cyst fluid in cystic brain tumors is a reliable alternative to tumor DNA when diagnosing brain tumors.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Oligodendroglioma , Humanos , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Líquido Cístico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Reação em Cadeia da Polimerase Multiplex , DNA
4.
Neuroradiology ; 66(3): 333-341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224343

RESUMO

PURPOSE: This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measurement using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q-codeleted and to identify the superior method. METHODS: Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evaluated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas using the Mann-Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance. RESULTS: The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value of 2290/128 ms for a combined 90th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/specificity with an AUC of 0.981. CONCLUSION: Compared to the radiologists' assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assessments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Masculino , Humanos , Feminino , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Inteligência Artificial , Diagnóstico Diferencial , Estudos Retrospectivos , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Isocitrato Desidrogenase/genética
5.
Neuro Oncol ; 26(4): 640-652, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141254

RESUMO

BACKGROUND: The TERT promoter mutation (TPM) is acquired in most IDH-wildtype glioblastomas (GBM) and IDH-mutant oligodendrogliomas (OD) enabling tumor cell immortality. Previous studies on TPM clonality show conflicting results. This study was performed to determine whether TPM is clonal on a tumor-wide scale. METHODS: We investigated TPM clonality in relation to presumed early events in 19 IDH-wildtype GBM and 10 IDH-mutant OD using 3-dimensional comprehensive tumor sampling. We performed Sanger sequencing on 264 tumor samples and deep amplicon sequencing on 187 tumor samples. We obtained tumor purity and copy number estimates from whole exome sequencing. TERT expression was assessed by RNA-seq and RNAscope. RESULTS: We detected TPM in 100% of tumor samples with quantifiable tumor purity (219 samples). Variant allele frequencies (VAF) of TPM correlate positively with chromosome 10 loss in GBM (R = 0.85), IDH1 mutation in OD (R = 0.87), and with tumor purity (R = 0.91 for GBM; R = 0.90 for OD). In comparison, oncogene amplification was tumor-wide for MDM4- and most EGFR-amplified cases but heterogeneous for MYCN and PDGFRA, and strikingly high in low-purity samples. TPM VAF was moderately correlated with TERT expression (R = 0.52 for GBM; R = 0.65 for OD). TERT expression was detected in a subset of cells, solely in TPM-positive samples, including samples equivocal for tumor. CONCLUSIONS: On a tumor-wide scale, TPM is among the earliest events in glioma evolution. Intercellular heterogeneity of TERT expression, however, suggests dynamic regulation during tumor growth. TERT expression may be a tumor cell-specific biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Telomerase , Humanos , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/genética , Glioblastoma/patologia , Oligodendroglioma/genética , Mutação , Biomarcadores Tumorais/genética , Isocitrato Desidrogenase/genética , Telomerase/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Ciclo Celular/genética
6.
Brain Pathol ; 34(1): e13203, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574201

RESUMO

The 2021 WHO Classification of Central Nervous System Tumors recommended evaluation of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion in addition to codeletion of 1p/19q to characterize IDH-mutant gliomas. Here, we demonstrated the use of a nanopore-based copy-number variation sequencing (nCNV-seq) approach to simultaneously identify deletions of CDKN2A/B and 1p/19q. The nCNV-seq approach was initially evaluated on three distinct glioma cell lines and then applied to 19 IDH-mutant gliomas (8 astrocytomas and 11 oligodendrogliomas) from patients. The whole-arm 1p/19q codeletion was detected in all oligodendrogliomas with high concordance among nCNV-seq, FISH, DNA methylation profiling, and whole-genome sequencing. For the CDKN2A/B deletion, nCNV-seq detected the loss in both astrocytoma and oligodendroglioma, with strong correlation with the CNV profiles derived from whole-genome sequencing (Pearson correlation (r) = 0.95, P < 2.2 × 10-16 to r = 0.99, P < 2.2 × 10-16 ) and methylome profiling. Furthermore, nCNV-seq can differentiate between homozygous and hemizygous deletions of CDKN2A/B. Taken together, nCNV-seq holds promise as a new, alternative approach for a rapid and simultaneous detection of the molecular signatures of IDH-mutant gliomas without capital expenditure for a sequencer.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Sequenciamento por Nanoporos , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Neoplasias Encefálicas/patologia , Mutação , Glioma/patologia , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
7.
Neuroradiology ; 66(2): 187-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127124

RESUMO

PURPOSE: The cortical high-flow sign with the non-enhancing area was reportedly found to be more frequent with oligodendroglioma, IDH-mutant and 1p/19q codeleted (ODG IDHm-codel) than with IDH-wildtype or astrocytoma, IDH-mutant on arterial spin labeling (ASL) in diffuse gliomas. This study aimed to compare the identification rate of the cortical high-flow sign on ASL in patients with ODG IDHm-codel to that on dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI). METHODS: Participants consisted of 32 adult ODG IDHm-codel patients with pathologically confirmed. Subtraction images were generated from paired control and label images on ASL. For DSC, dynamic T2*-weighted perfusion weighted images were obtained after pre-bolus of gadolinium-based contrast agent. Regional cerebral blood flow/volume maps were generated based on the concentration-time curve and arterial input function. Tumor-affecting cortices without contrast enhancement on conventional MR imaging were targeted. The identification rate of the cortical high-flow sign was compared between ASL and DSC using the Pearson's Chi-Square test. RESULTS: Frequency of the cortical high-flow sign was significantly higher on ASL (18/32, 56.3%; p < 0.001) than on DSC (5/32, 15.6%). All cases with the positive cortical high-flow sign on DSC were identified on ASL. CONCLUSION: ASL effectively identifies the cortical high-flow sign in ODG IDHm-codel, surpassing DSC in identification rates.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Adulto , Humanos , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Marcadores de Spin , Imageamento por Ressonância Magnética/métodos , Mutação , Isocitrato Desidrogenase/genética
10.
Cell Rep Med ; 4(11): 101249, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37883975

RESUMO

The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes. In addition to astrocyte-like, oligodendrocyte progenitor-like, and cycling tumor subpopulations, a tumor population enriched for ribosomal genes and translation elongation factors is primarily present in oligodendrogliomas. Longitudinal analysis of astrocytomas indicates that the proportion of tumor subpopulations remains stable in recurrent tumors. Analysis of tumor-associated microglia/macrophages (TAMs) reveals significant differences between oligodendrogliomas, with astrocytomas harboring inflammatory TAMs expressing phosphorylated STAT1, as confirmed by immunohistochemistry. Furthermore, inferred receptor-ligand interactions between tumor subpopulations and TAMs may contribute to TAM state diversity. Overall, our study sheds light on distinct tumor populations, TAM heterogeneity, TAM-tumor interactions in IDH-mutant glioma subtypes, and the relative stability of tumor subpopulations in recurrent astrocytomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Neoplasias Encefálicas/genética , Microglia/patologia , Mutação , Recidiva Local de Neoplasia/genética , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Isocitrato Desidrogenase/genética
11.
AJNR Am J Neuroradiol ; 44(11): 1270-1274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884300

RESUMO

BACKGROUND AND PURPOSE: IDH-mutant gliomas are further divided on the basis of 1p/19q status: oligodendroglioma, IDH-mutant and 1p/19q-codeleted, and astrocytoma, IDH-mutant (without codeletion). Occasionally, testing may reveal single-arm 1p or 19q deletion (unideletion), which remains within the diagnosis of astrocytoma. Molecular assessment has some limitations, however, raising the possibility that some unideleted tumors could actually be codeleted. This study assessed whether unideleted tumors had MR imaging features and survival more consistent with astrocytomas or oligodendrogliomas. MATERIALS AND METHODS: One hundred twenty-one IDH-mutant grade 2-3 gliomas with 1p/19q results were identified. Two neuroradiologists assessed the T2-FLAIR mismatch sign and calcifications, as differentiators of astrocytomas and oligodendrogliomas. MR imaging features and survival were compared among the unideleted tumors, codeleted tumors, and those without 1p or 19q deletion. RESULTS: The cohort comprised 65 tumors without 1p or 19q deletion, 12 unideleted tumors, and 44 codeleted. The proportion of unideleted tumors demonstrating the T2-FLAIR mismatch sign (33%) was similar to that in tumors without deletion (49%; P = .39), but significantly higher than codeleted tumors (0%; P = .001). Calcifications were less frequent in unideleted tumors (0%) than in codeleted tumors (25%), but this difference did not reach statistical significance (P = .097). The median survival of patients with unideleted tumors was 7.8 years, which was similar to that in tumors without deletion (8.5 years; P = .72) but significantly shorter than that in codeleted tumors (not reaching median survival after 12 years; P = .013). CONCLUSIONS: IDH-mutant gliomas with single-arm 1p or 19q deletion have MR imaging appearance and survival that are similar to those of astrocytomas without 1p or 19q deletion and significantly different from those of 1p/19q-codeleted oligodendrogliomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Imageamento por Ressonância Magnética/métodos , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1/genética , Mutação , Cromossomos Humanos Par 19/genética
12.
No Shinkei Geka ; 51(5): 760-770, 2023 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-37743327

RESUMO

The Central Nervous System Tumours: WHO Classification of Tumours, 5th ed.(WHO CNS5)incorporates molecular pathogenesis with histopathology to classify brain tumors into more biologically and narrowly defined entities. According to this approach, adult-type diffuse gliomas are classified into three tumor types: astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and glioblastoma, IDH-wildtype. Astrocytoma and oligodendroglioma are clearly defined as IDH-mutant tumors, and glioblastoma as an IDH-wildtype tumor. WHO CNS5 provides clear diagnostic criteria framed as "essential and desirable diagnostic criteria," including histopathological and molecular features. In this article, we summarized the diagnostic and grading criteria of adult-type diffuse gliomas, which include histopathological and molecular features. Further, we presented a clinical diagnostic workflow based on the immunohistopathological studies, molecular tests and their surrogate assays, and histopathological features to establish the diagnosis of adult-type diffuse gliomas. We also discussed the limitations of the clinical diagnostic workflow; for instance, some tumors may not fit within this classification provided by this diagnostic flow. Despite these limitations, we are required to utilize the diagnostic criteria and determine optimal treatment in the clinical setting.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Adulto , Humanos , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Glioma/diagnóstico , Glioma/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética
13.
No Shinkei Geka ; 51(5): 811-820, 2023 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-37743332

RESUMO

Oligodendrogliomas were clearly defined as tumors with IDH mutations and 1p/19q codeletion by the World Health Organization(WHO)in 2016. Their prognosis is better than that of morphologic oligodendrogliomas, which might include some other gliomas according to WHO in 2016 and 2021. The term "low-grade gliomas" does not exist in the WHO classification and has changed in meaning over time; prior to WHO 2016, it meant grade I and II gliomas; subsequently, it changed to "lower-grade gliomas," including grade II and III gliomas, with the same molecular features. In the current classification, IDH wild-type grade II and III gliomas have been eliminated, and "lower-grade gliomas" now only include gliomas with IDH mutations. Maximal safe resection is necessary for a proper molecular diagnosis and survival, and awake craniotomy should be aggressively considered to prevent permanent postoperative neurologic deficits for tumors in the eloquent region. Supramarginal resection is an attractive approach for neurosurgeons to improve survival outcomes, but the evidence is still lacking. Chemoradiotherapy with procarbazine, CCNU, and vincristine is recommended for both grade 2 and 3 oligodendrogliomas. However, the risk of radiation-induced neurotoxicity is a concern in long-term survivors, and several clinical trials have tested the efficacy of chemotherapy alone in terms of cognitive function. Since CCNU is not approved in Japan, ACNU-containing regimen as PAV, or temozolomide are commonly used for the tumor.


Assuntos
Glioma , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/terapia , Glioma/genética , Glioma/terapia , Cognição , Mutação , Lomustina
14.
Brain Tumor Pathol ; 40(4): 230-234, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695397

RESUMO

Central neurocytoma (CN) is classically defined by its intraventricular location, neuronal/neurocytic differentiation, and histological resemblance to oligodendroglioma. Extraventricular neurocytoma (EVN) shares similar histological features with CN, while it distributes any site without contact with the ventricular system. CN and EVN have distinct methylation landscapes, and EVN has a signature fusion gene, FGFR1-TACC1. These characteristics distinguish between CN and EVN. A 30-year-old female underwent craniotomy and resection of a left intraventricular tumor at our institution. The histopathology demonstrated the classical findings of CN. Adjuvant irradiation with 60 Gy followed. No recurrence has been recorded for 25 years postoperatively. RNA sequencing revealed FGFR1-TACC1 fusion and methylation profile was discrepant with CN but compatible with EVN. We experienced a case of anatomically and histologically proven CN in the lateral ventricle. However, the FGFR1-TACC1 fusion gene and methylation profiling suggested the molecular diagnosis of EVN. The representative case was an "intraventricular" neurocytoma displaying molecular features of an "extraventricular" neurocytoma. Clinicopathological and molecular definitions have collided in our case and raised questions about the current definition of CN and EVN.


Assuntos
Neoplasias Encefálicas , Neurocitoma , Oligodendroglioma , Feminino , Humanos , Adulto , Neurocitoma/genética , Neurocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ventrículos Cerebrais/patologia , Oligodendroglioma/genética , Sequenciamento do Exoma
15.
Cancer Genet ; 278-279: 55-61, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625215

RESUMO

BACKGROUND: Either deletion or co-deletion of chromosomal arms 1p or 19q is a characteristic and early genetic event in oligodendroglial tumors that is associated with a better prognosis and enhanced response to therapy. Information of 1p/19q status is now regarded as the standard of care when managing oligodendroglial tumors for therapeutic options in anticipation of the increased survival and progression-free survival times associated with it. Keeping this in view, we first time attempted to establish the FISH based detection of 1p/19q deletion in glioma tissue samples to evaluate its role and involvement in the disease. METHOD: Overall 39 glioma cases of different histologies were evaluated by fluorescence in situ hybridization (FISH) technique using specific FISH probes with Olympus BX43 fluorescent microscope to detect chromosomes 1p and 19q or co-deletions therein. RESULTS: Of the 39 glioma samples, overall 27 (69.2%) were found to have deletion either in 1p, 19q or both. Deletions were observed in 23.0%, 7.6% and 38.4% in 1p, 19q and 1p/19q co-deletions respectively. Overall oligidendrioglioma presented with 53.8% (21 of 39) deletions, astrocytoma group showed 12.8% and GBM accounted for 2.5% deletions. Overall survival and disease free survival was seen significantly better in oligidendrioglioma and astrocytoma with deleted tumors as compared to non-deleted ones (p<0.05). CONCLUSION: Allelic losses on 1p and 19q, either discretely or shared, were more frequent in classic oligodendrogliomas than in either astrocytoma or Glioblastoma with better survival and response to therapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Prognóstico , Hibridização in Situ Fluorescente , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Deleção Cromossômica , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Oligodendroglioma/tratamento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Astrocitoma/genética , Aberrações Cromossômicas , Cromossomos , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética
16.
J Neurooncol ; 164(1): 65-74, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37603235

RESUMO

PURPOSE: Since the introduction of the molecular definition of oligodendrogliomas based on isocitrate dehydrogenase (IDH)-status and the 1p19q-codeletion, it has become increasingly evident how this glioma entity differs much from other diffuse lower grade gliomas and stands out with longer survival and often better responsiveness to adjuvant therapy. Therefore, apart from using a molecular oligodendroglioma definition, an extended follow-up time is necessary to understand the nature of this slow growing, yet malignant condition. The aim of this study was to describe the long-term course of the oligodendroglioma disease in a population-based setting and to determine which factors affect outcome in terms of survival. METHODS: All adults with WHO-grade 2 oligodendrogliomas with known 1p19q-codeletion from five Scandinavian neurosurgical centers and with a follow-up time exceeding 5 years, were analyzed regarding survival and factors potentially affecting survival. RESULTS: 126 patients diagnosed between 1998 and 2016 were identified. The median follow-up was 12.0 years, and the median survival was 17.8 years (95% CI 16.0-19.6). Factors associated with shorter survival in multivariable analysis were age (HR 1.05 per year; CI 1.02-1.08, p < 0.001), tumor diameter (HR 1.05 per millimeter; CI 1.02-1.08, p < 0.001) and poor preoperative functional status (KPS < 80) (HR 4.47; CI 1.70-11.78, p = 0.002). In our material, surgical strategy was not associated with survival. CONCLUSION: Individuals with molecularly defined oligodendrogliomas demonstrate long survival, also in a population-based setting. This is important to consider for optimal timing of therapies that may cause long-term side effects. Advanced age, large tumors and poor function before surgery are predictors of shorter survival.


Assuntos
Glioma , Oligodendroglioma , Adulto , Humanos , Oligodendroglioma/genética , Oligodendroglioma/terapia , Seguimentos , Terapia Combinada , Organização Mundial da Saúde
17.
Cancer Med ; 12(16): 17171-17183, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37533228

RESUMO

BACKGROUND: Oligodendroglioma is known for its relatively better prognosis and responsiveness to radiotherapy and chemotherapy. However, little is known about the evolution of genetic changes as oligodendroglioma progresses. METHODS: In this study, we evaluated gene evolution invivo during tumor progression based on deep whole-genome sequencing data (ctDNA). We analyzed longitudinal genomic data from six patients during tumor evolution, of which five patients developed distant recurrence. RESULTS: Whole-exome sequencing demonstrated that the rate of shared mutations between the primary and recurrent samples was relatively low. In two cases, even well-known major driver mutations in CIC and FUBP1 that were detected in primary tumors were not detected in the relapse samples. Among these cases, two patients had a conversion from the IDH mutation in the originating state to the IDH1 wild state during the process of gene evolution under chemotherapy treatment, indicating that the cell phenotype and genetic characteristics of oligodendroglioma may change during tumor evolution. Two patients received long-term temozolomide (TMZ) treatment before the operation, and we found that recurrence tumors harbored mutations in the PI3K/AKT and Sonic hedgehog (SHh) signaling pathways. Hypermutation occurred with mutations in MMR genes in one patient, contributing to the rapid progression of the tumor. CONCLUSION: Oligodendroglioma displayed great spatial and temporal heterogeneity during tumor evolution. The PI3K/AKT and SHh signaling pathways may play an important role in promoting treatment resistance and distant relapse during oligodendroglioma evolution. In addition, there was a tendency to increase the degree of tumor malignancy during evolution. Distant recurrence may be a later event duringoligodendroglioma progression. CLINICALTRIALS: gov, Identifier: NCT05512325.


Assuntos
Neoplasias Encefálicas , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Hedgehog/metabolismo , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Mutação , Genômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética
18.
J Cancer Res Ther ; 19(3): 562-566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470575

RESUMO

Introduction: Gliomas are the most common primary intracranial tumors. The current World Health Organization (WHO) classification of central nervous system tumors recommends integrated histo-molecular diagnosis of gliomas. However, molecular testing is not available in even most of the advanced centers of our country, and histopathology aided with immunohistochemistry (IHC) is still widely used for diagnosis. Immunohistochemical markers such as iso-citrate dehydrogenase1 (IDH1) and Alpha Thalassemia/Mental Retardation Syndrome X-linked (ATRX) can be reliably used for the correct diagnosis, prognosis, and treatment of gliomas. Aim: We aimed to develop a diagnostic algorithm by integrating morphology, IDH1, and ATRX status of gliomas seen in our institute for 1 year. Settings and Design: Analytical cross-sectional study. Materials and Methods: This study included 60 histopathologically confirmed cases of astrocytic (n = 51) and oligodendroglial tumors (n = 9). Clinical, radiological, and histopathological features were noted and tumor grades assigned according to the WHO recommendations. IDH1 and ATRX mutation status was evaluated using IHC. The tumors were divided into three molecular groups on the basis of their IDH1 and ATRX mutation status: (1) Group 1: IDH1 negative and ATRX positive, (2) Group 2: IDH1 positive and ATRX positive, (3) Group 3: IDH1 positive and ATRX negative. Results: The mean age of presentation was 45.0 ± 15.8 years with a male-to-female ratio of 2:1. Seizures, headache, and hemiparesis were the most common modes of presentation. The tumor subtypes studied were glioblastoma (n = 32), anaplastic astrocytoma (n = 7), diffuse astrocytoma (n = 6), oligodendroglioma (n = 6), pilocytic astrocytoma (n = 6), and anaplastic oligodendroglioma (n = 3). IDH1 mutation was present in 26 cases including anaplastic astrocytoma (n = 7), diffuse astrocytoma (n = 6), oligodendroglioma (n = 5), secondary glioblastoma (n = 5), and anaplastic oligodendroglioma (n = 3). ATRX mutation, i. e., loss of ATRX was observed in 17 cases including diffuse astrocytoma (n = 5), anaplastic astocytoma (n = 5), anaplastic oligodendroglioma (n = 3), oligodendroglioma (n = 3), and secondary glioblastoma (n = 1). All six cases of pilocytic astrocytoma were negative for IDH1 and ATRX mutation. There were 34 patients in Group 1 (IDH1- and ATRX +), nine cases in Group 2 (IDH1 + and ATRX +), and 17 patients in Group 3 (IDH1 + and ATRX-). Conclusion: Diagnosis of gliomas should be based on a detailed clinicoradiological and histopathological assessment, followed by genotypic characterization. Evaluation for IDH1and ATRX status has both diagnostic and prognostic value as it helps in differentiating gliomas from reactive gliosis, primary glioblastoma from secondary glioblastoma, and pilocytic astrocytoma (WHO grade I) from diffuse astrocytoma (WHO grade II). Tumors with IDH1 mutations have a better outcome than those with wild-type IDH. IHC can serve as a useful surrogate to conventional molecular tests in resource-constrained settings. By devising an algorithm based on morphological and IHC features, we were able to stratify gliomas into three prognostic subgroups.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Glioblastoma/patologia , Estudos Transversais , Proteína Nuclear Ligada ao X/genética , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Astrocitoma/diagnóstico , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Prognóstico , Citratos , Ácido Cítrico , Isocitrato Desidrogenase/genética , Algoritmos
19.
Korean J Radiol ; 24(8): 772-783, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500578

RESUMO

OBJECTIVE: Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. MATERIALS AND METHODS: This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-co-deleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. RESULTS: Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). CONCLUSION: Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Oligodendroglioma/genética , Organização Mundial da Saúde , Isocitrato Desidrogenase/genética , Mutação
20.
Appl Immunohistochem Mol Morphol ; 31(6): 390-398, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278280

RESUMO

Diffuse gliomas exhibit different molecular and genetic profiles with a wide range of heterogeneity and prognosis. Recently, molecular parameters including ATRX, P53, and IDH mutation status or absence or presence of 1p/19q co-deletion have become a crucial part of the diagnosis of diffuse glioma. In the present study, we tried to analyze the routine practice of the above-mentioned molecular markers focusing on the IHC method in cases of adult diffuse gliomas to evaluate their utility in the integrated diagnosis of adult diffuse gliomas. In total, 134 cases of adult diffuse glioma were evaluated. Using the IHC method, 33,12, and 12 cases of IDH mutant Astrocytoma grade 2, 3, 4, and 45 cases of gliobalstoma, IDH wild type, were molecularly diagnosed. By adding the FISH study for 1p/19q co-deletion, 9 and 8 cases of oligodendroglioma grade 2 and 3 also were included. Two IDH mutant cases were negative for IDH1 in IHC but revealed a positive mutation in further molecular testing. Finally, we were not able to incorporate a complete integrated diagnosis in 16/134(11.94%) of cases. The main molecularly unclassified group was histologically high-grade diffuse glial tumors in patients less than 55 years old and negative IDH1 immunostaining. P53 was positive in 23/33 grade 2, 4/12 grade 3, and 7/12 grade 4 astrocytomas, respectively. Four out of 45 glioblastomas showed positive immunostain, and all oligodendrogliomas were negative. In conclusion, a panel of IHC markers for IDH1 R132H, P53, and ATRX significantly improves the molecular classification of adult diffuse gliomas in daily practice and can be used as a tool to select limited cases for co-deletion testing in the low resources area.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Proteína Supressora de Tumor p53/genética , Imuno-Histoquímica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteína Nuclear Ligada ao X/genética , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Glioblastoma/patologia , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Mutação , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA